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Abstract. Positive transfer learning (TL) occurs when, after gaining experi-
ence from learning how to solve a (source) task, the same learner can exploit 
this experience to improve performance and/or learning on a different (target) 
task. TL methods are typically complex, and case-based reasoning can support 
them in multiple ways. We introduce a method for recognizing intent in a 
source task, and then applying that knowledge to improve the performance of a 
case-based reinforcement learner in a target task. We report on its ability to 
significantly outperform baseline approaches for a control task in a simulated 
game of American football. We also compare our approach to an alternative 
approach where source and target task learning occur concurrently, and discuss 
the tradeoffs between them. 

1   Introduction 

There is a huge body of research on the study of transfer in psychology and education 
(e.g., Thorndike & Woodworth, 1901; Perkins & Salomon, 1994; Bransford et al., 
2000), among other disciplines. Transfer is, more specifically, a focus of some re-
search related to case-based reasoning (CBR), namely psychologically plausible theo-
ries of analogical transfer (e.g., Gentner, 1993; Hinrichs & Forbus, 2007). Arguably, 
case-based reasoning is the study of computational models for knowledge transfer, 
which plays a central role in the crucial topic of lifelong learning. Given this, there are 
surprisingly few publications on this topic in the CBR literature today. 

Recently, this changed due to an increased emphasis on the study of Transfer 
Learning (TL), motivated in part by a DARPA research program of the same name.1 
TL concerns the study of how learning to solve tasks in a source domain can impact 
an agent’s ability to learn to solve tasks from a target domain, where the focus is on 
positive transfer (i.e., involving improvements on measures of task performance). For 
example, we would expect that knowledge obtained from learning how to play one 
real-time strategy game (e.g., AGE OF EMPIRES) may assist us in learning to play a 
related, but different, game in the same genre (e.g., EMPIRE EARTH). 
                                                           
1 http://www.darpa.mil/ipto/programs/tl/docs/TL_Brief.ppt 
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In this paper, we provide an overview of Transfer Learning and CBR techniques 
for achieving TL. We also introduce a method that uses intent recognition to create an 
abstraction of an actor’s intentions to facilitate the TL process. This could enable the 
learner to reformulate problem instances involving the same actor. We conceptualize 
the actor's behavior as being governed by a set of hidden state variables that can be 
discovered through intent recognition and utilized by the transfer learner. 

In the following sections, we discuss transfer learning, how CBR has served and 
can serve in some TL methods, introduce and evaluate a novel method that uses intent 
recognition to facilitate transfer learning for a case-based reinforcement learner per-
forming a target task, and examine the tradeoffs of TL approaches versus a concurrent 
learning method (i.e., that gains experience from the source and target tasks, simulta-
neously) (Molineaux et al., 2009). Our study involves tasks drawn from an American 
Football simulator (RUSH 2008). We will conclude with future research suggestions at 
the intersection of CBR, TL, and plan recognition. 

2   Transfer Learning and Case-Based Reasoning 

Research on machine learning has traditionally focused on tasks in which examples 
are repeatedly and independently drawn from an identical distribution (i.i.d.) (Simon, 
1983). This simplifying assumption is the basis of most ML research to date, as well 
as most research on case-based learning. In particular, it underlies the mathematical 
foundations of many existing supervised learning algorithms, and permits the study of 
their ability to generalize from training data.  

This contrasts with reality; people frequently leverage their experience gained from 
one task to improve their performance on different, novel tasks. That is, they perform 
transfer learning: 

Definition. Transfer learning (TL) is the practice of recognizing and applying  
knowledge and skills learned from one or more previous tasks to more efficiently 
and/or effectively learn to solve novel tasks (in new domains).  

Thus, the i.i.d. assumption does not (normally) hold in TL tasks. Yet general methods 
for TL hold the promise for being exceedingly useful; they could dramatically de-
crease the amount of training/cases required to achieve a given level of problem-
solving competence in one domain by successfully employing knowledge obtained 
from solving problems for different, but related, tasks. This gap has motivated the 
development of computational models for TL, which has been the focus of recent 
workshops at NIPS-05, ICML-06, and AAAI-082, in addition to a large number of 
publications (e.g., Marx et al., 2005; Raina et al., 2006; Shapiro et al., 2008). 

To clarify, Figure 1 summarizes a TL method and its evaluation process. The 
learning agents, tasks, performance metrics, and environments may all differ between 
the source and target domains. The key object handed off from source to target is the 
learned knowledge from the source domain. An evaluation of the process typically 
compares two conditions: the transfer condition (depicted by the entirety of Figure 1), 
in which case a Mapper is used to transform knowledge acquired from training on the 
 

                                                           
2 http://teamcore.usc.edu/taylorm/AAAI08TL/index.htm 
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Fig. 1. Transfer learning conditions, method, and evaluation strategy 

source task to solve target tasks, and the non-transfer condition (depicted as a subsec-
tion in Figure 1), in which no such source task knowledge is leveraged. (The dotted 
line emanating from the Mapper indicates that it is referenced only by the transfer 
condition.) For these two conditions, two sets of learning curves are generated accord-
ing to the target task’s performance metric. These, along with a TL metric, are given 
to an analysis component for significance testing. We discuss examples of these for 
our study in Section 3. 

TL problems vary widely, and a large variety of learning agents have been exam-
ined. For example, in some agents, only trivial mapping takes place, while in others 
mapping is a comprehensive, focal task. In most cases, the mapping is an abstraction 
designed to assist with relating source and target tasks.  

While transfer has been long-studied in CBR (e.g., Goel & Bhatta, 2004), we re-
view only a subset of recent relevant research to provide the context for our contribu-
tion. In this context, Table 1 summarizes and distinguishes five branches of prior  
research. In their TL processes, CBR is used for mapping, for learning in the target 
domain, or both. For example, Kuhlmann and Stone (2007) enumerate a constrained 
space of related game descriptions and store graph representations of them as cases. 
They then use graph isomorphism to map stored cases so as to reuse reinforcement 
learning (RL) value functions learned from solving source tasks (i.e., related game 
variants). Liu and Stone (2006) instead use a domain-tailored variant of the structure-
mapping engine (SME) (Falkenhainer et al., 1989) to perform source-target task map-
ping. Their cases encode agent actions in KeepAway soccer games as qualitative  
dynamic Bayesian networks. The focus is again on value function reuse. Von 
Hessling and Goel (2005) propose to learn abstractions of Q-learned policies (i.e., as 
decision trees) indexed by the environment’s features. The policies are to be reused in 
similar environments. Sharma et al. (2007) focus on learning and reusing Q values for 
state-action pairs, where the feature vector states are case indices representing situa-
tions in a real-time strategy game. Their CBR/RL algorithm updates the Q values and 
eligibility traces of stored cases, where actions denote tactical decisions at the middle 
level of a three-level action hierarchy.  
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Table 1. Summary of some related work on CBR and transfer learning 

TL Tasks Reference CBR Use TL 
Levels Source Target 

Environment 
Type 

(von Hessling & 
Goel, ICCBR-05 WS)

Maps <world, decision tree policy> 
cases/models for Q fn. xfer in RL 2,5 Navigation in Civ. 

Turn-based Game
Same; Vary map 

Turn-Based Strategy: 
Microworld 

(Liu & Stone, 
AAAI-06) 

Map QDBN task models: Modified 
SME for value fn. xfer in RL 4 KeepAway 

Same; Vary # of 
units 

Team Sports:      
RoboCup Soccer 

(Sharma et al., 
IJCAI-07) 

Map case models via Euclidean 
state sim. for Q fn. xfer for CBR/RL 1,4 Military control 

Same; Vary # units 
or locations 

Real-Time Strategy: 
MadRTS 

(Klenk & Forbus, 
AAAI-07) 

Map solutions via knowledge-
intensive structure-mapping for CBR 1-6 Mechanics 

Problem Solving Several variations!
Question answering: 

AP Physics 
(Kuhlmann & Stone,
ECML-07) 

Map game description task models 
via graph isomorphism for RL  3-5 Board games 

(e.g., mini-chess)
Same; Vary board 
size, # pieces, etc

General Game 
Playing: GGP 

This Paper Map feature learned via intent 
recognition to learn Q fn. for CBR/RL 9 Identify Play of 

Defense 
Control QB in 
Football Play 

Team Sports:       
Rush 2008 

In stark contrast, Klenk and Forbus (2007) do not rely on RL. Instead, they employ 
SME in a context where cases are solutions to mechanics problems represented in 
predicate calculus.  Given a new problem, they use the candidate inferences generated 
by SME to construct the necessary model (e.g., applicable equations and assumptions) 
to arrive at a solution. 

Unlike these prior studies, we use an intent recognition approach in the source task 
to learn a crucial feature (i.e., the defensive team’s play) for use in the target task (i.e., 
controlling the offensive team’s Quarterback). The source and target tasks in previous 
work used similar control problems for both tasks, differing, for example, only in the 
number of agents on the playing field. One way to distinguish transfer learning tasks 
was suggested in the DARPA TL program, which proposed 11 categories (levels1) of 
TL tasks. While intended to be only an initial categorization scheme that ranges from 
simple Memorizing (i.e., generalization over i.i.d. examples) to complex Differing 
(i.e., distant-transfer) tasks, it was not subsequently refined by TL researchers. Still, it 
is useful for our needs: the prior work described above focused on tasks in which, for 
example, the set of components/units were modified, or the map/formulation differs 
among the source and target tasks. We instead focused on TL level 9, Reformulating, 
in which a representation transformation is needed to relate the two tasks. This is not 
to say that our task is more challenging, but rather that it involves different issues. 

In addition, our task environment differs; it is a multiagent team sports simulator 
for American football, in which agents differ in their capabilities and pre-determined 
responsibilities, and the target task concerns controlling a specific agent.  

We discuss related work on intent recognition for TL in Section 5. Due to page 
limitations, please see (Molineaux et al., 2009) for a discussion of related work on 
case-based reinforcement learning, which is not the focus of our current investigation. 

3   Case Study: Intent Recognition for Transfer Learning 

In this section, we introduce and evaluate a TL agent that performs intent recognition 
in a source task to improve the performance of a case-based reinforcement learner  
on a distinct target task. We describe the tasks, the learning algorithms, and their 
analyses. Our empirical study instantiates the methodology summarized in Figure 1. 
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Fig. 2. Left: The RUSH 2008 starting formation we used for the offense (blue) and defense 
(red), with some player/position annotations. Right: Six of the QB’s eight possible actions. Not 
shown are Throw RB and Noop. 

3.1   Environment, Tasks, and State Representations 

Our source and target tasks both use the RUSH 20083
 environment, which we adapted 

from the open-source RUSH 20054
 simulator to support intelligent agent studies. RUSH 

simulates a simplified American football game on a small field (100x63 yards) where 
both the offensive and defensive teams have only eight players (see Figure 2). The source 
task concerns supervised intent recognition: learn to predict the play of the defensive 
team after observing the first few moments of the play. The defense always starts in the 
same formation and randomly selects one of 8 possible strategies appropriate for his  
formation. The defensive players act as follows:  

Defensive Lineman (DL) (2 Players): These line up across the line of scrimmage 
(LOS) from the OL (see acronyms below) and try to tackle the ball handler. 

Linebacker (LB) (2): Starting behind the DL, they will blitz the QB or guard a zone 
of the field or an eligible receiver (i.e., the RB, WR1, or WR2). 

Cornerback (CB) (2): These line up across the LOS from the WRs and guard a 
player or a zone on the field. 

Safety (S) (2): These begin 10 yards behind the LOS and provide pass coverage or 
chase offense players. 

The target task, in which the identity of the defensive play is not revealed (i.e., is a 
hidden state variable), is to learn to control the quarterback’s actions on repeated  
executions of a pass play, where the offensive players perform the following actions: 

Quarterback (QB): Given the ball at the start of each play while standing 3 yards 
behind the center of the LOS, our QB agent decides whether and when to run (in 
one of four possible directions), stand, or throw (and to which receiver).  

                                                           
3 http://www.knexusresearch.com/projects/rush/ 
4 http://rush2005.sourceforge.net/ 
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Running Back (RB): Starts 3 yards behind the QB, runs to an initial position 7 yards 
left and 4 yards downfield, then charges straight toward the goal line. 

Wide Receiver #1 (WR1): Starts 16 yards to the left of the QB on the LOS, runs 5 
yards downfield and turns right.  

Wide Receiver #2 (WR2): Starts 16 yards to the right of the QB a few yards behind 
the LOS, runs 5 yards downfield, and waits. 

Tight End (TE): Starts 8 yards to the right of the QB on the LOS and pass-blocks.  

Offensive Linemen (OL): These 3 players begin on the LOS in front of the QB and 
pass-block (for the QB).  

All players are given specific behavioral instructions (i.e., for the offense, a series of 
actions to execute) except for the QB, whose actions are controlled by our learning 
agent. The simulator is stochastic; each instructed player’s actions are random within 
certain bounds (e.g., the RB will always go to the same initial position, but his path 
may vary). Each player has varying ability (defined on a 10-point scale) in the catego-
ries power, speed, and skill; these affect the ability to handle the ball, block, run, and 
tackle other players. The probability that a passed ball is caught is a function of the 
number and skills of defenders near the intended receiver (if any), the skills of the 
receiver, and the distance the ball is thrown.  

RUSH uses a simplified physics; players and the ball each maintain a constant ve-
locity while moving, except that the ball will accelerate downwards due to gravity. 
Objects are represented as rectangles that interact when they overlap (resulting in a 
catch, block, or tackle). 

For the source task, we found that plays from a given starting formation are usually 
distinguishable after 3 time steps (Sukthankar et al., 2008). Given this, we use a fea-
ture vector representation of length 17 for source task examples. This includes 16 
features for the 8 defensive players’ displacement in two-dimensional space over the 
first 3 time steps, plus a label indicating the defensive play’s name. 

At the start of each play (for both tasks), the ball is placed at the center of the LOS 
along the 50 yard line. For the target task, the agent’s reward is 1000 for a touchdown 
(i.e., a gain of at least 50 yards), -1000 for an interception or fumble, or is otherwise 
ten times the number of yards gained (e.g., 0 for an incomplete pass) when the play 
ends. A reward of 0 is received for all actions before the end of the play. Touchdowns 
(0.01%-0.2%), interceptions, and fumbles (combined: 1%-3%) rarely occur. 

For the target task, our learning agent attempts to control the QB’s actions so as to 
maximize total reward. The QB can perform one of eight actions (see Figure 2) at 
each time step. The first four (Forward, Back, Left, and Right) cause the QB to 
move in a certain direction for one time step. Three more cause the QB to pass to a 
receiver (who is running a pre-determined pass route): Throw RB, Throw WR1, and 
Throw WR2. Finally, Noop causes the QB to stand still. The QB may decide to run 
the football himself, and will choose actions until either he throws the ball, crosses 
into the end zone (i.e., scores a touchdown by gaining 50 yards from the LOS), or is 
tackled. If the QB passes, no more actions are taken, and the play finishes when an 
incompletion or interception occurs, or a successful receiver has been tackled or 
scores a touchdown. 
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The state representation in the target task contains only two features. The first denotes 
the defensive strategy (predicted after the third time step), while the second is the time 
step. For the transfer condition, the first feature’s value will be predicted using the model 
transferred from learning on the source task. For the non-transfer condition, it will in-
stead be randomly selected, chosen according to a uniform distribution over the defensive 
plays in use.  

3.2   Learning Algorithms 

Many multi-class supervised learning algorithms can be used for the source task. We 
considered both support vector machines (SVMs) (Vapnik, 1998), due to their popu-
larity and success, and the k-nearest neighbor classifier (using Euclidean distance), 
because it is a simple case-based algorithm. A soft-margin SVM for binary classifica-
tion projects data points into a higher dimensional space, specified by a kernel func-
tion, and computes a maximum-margin hyperplane decision surface that most nearly 
separates two classes. Support vectors are those data points that lie closest to this de-
cision surface; if these data points were removed from the training data, the decision 
surface would change. More formally, given a labeled training set T = 
{(x1,y1),(x2,y2),…,(xn,yn)} with feature vectors xi∈ℜn and class labels yi∈{-1,1}, a soft 
margin SVM solves the following to find the maximal hyperplane that (most nearly) 
separates the two classes: 

 
constrained by: 

 

where w is the normal vector lying perpendicular to the hyperplane, b is a bias, ξi is a 
slack variable that measures the degree of misclassification of xi, C is a constant, and 
function φ(.) is represented by a kernel function K(xi,xj)= φ(xi,xj)φ(xi,xj). We use the 
radial basis function kernel:  

 

To work on our 8-class problem, we employ a standard one-vs-one voting scheme 
where all 28 (i.e., 8*(8-1)/2) pair-wise binary classifiers are trained and the most 
popular class is selected. For our studies, we use the LIBSVM (Chang & Lin, 2001) 
implementation, and set C=1 and γ=0.008. 

In the transfer condition, the model learned from the source task will be provided 
to the target task learner. The Mapper (Figure 1) will apply this model to the scenario 
data and output the predicted value of the first (of two) features.  

Our recent focus has been on examining the behavior of novel case-based RL algo-
rithms (Molineaux et al., 2008; 2009). Here we use a related algorithm, named Case-
Based Q-Lambda with Intent Recognition (CBQL-IR), for the target learning task. 
Based on the Q(λ) algorithm (Sutton & Barto, 1998), it uses a set of case bases to ap-
proximate the standard RL Q function and the trained supervised algorithm from the 
source task to add opponent intent information to the state.  
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The Q function approximation maps state-action pairs to an estimate of the long-
term reward for taking an action a in a state s. There is one Qa case base in this set for 
each action a∈A, where A is the set of 8 actions defined by the environment. Cases in 
Qa are of the form <s, v>, where s is a feature vector describing the state and v is a 
real-valued estimate of the reward obtained by taking action a in state s, then pursuing 
the current policy until the task terminates. These case bases support a case-based 
problem solving process (López de Mantaras et al., 2005). At the start of each ex-
periment, each Qa case base is initialized to the empty set. Cases are then added and 
modified as new experiences are gathered, which provide new local estimates of the 
Q function.  

At each time step, a state is observed by the agent, and an action is selected. With 
probability ε, a random action will be chosen (exploration). With probability 1-ε, 
CBQL-IR will predict the (estimated) best action to take (exploitation). To exploit, it 
reuses each Qa case base by performing a locally-weighted regression using a Gaus-
sian kernel on the retrieved k nearest neighbors of the current observed state s. (For 
faster retrieval, we use kd-trees to index cases.) Similarity is computed using a nor-
malized Euclidean distance function. This produces an estimate of the value of taking 
action a in the current observed state s. CBQL-IR selects the action with the highest 
estimate, or a random action if any case base has fewer than k neighbors. 

Once that action is executed, a reward r and a successor state s’ are obtained from 
RUSH 2008. This reward is used to improve the estimate of the Q function. If the case 
is sufficiently novel (greater than a distance τ from its nearest neighbor) a new case is 
retained in Qa with state s and , where   denotes the 
current estimate for a state in Qa and 0≤γ<1 is the discount factor. If the case is not 
sufficiently novel, the k nearest neighbors are revised according to the current learn-
ing rate α and their contribution β to the estimate of the state’s value (determined by a 
normalization over the Gaussian kernel function, summing to 1). The solution value 
(i.e., reward estimate) of each case is updated using:  

. 
Finally, the solution values of all cases updated earlier in the current trial are updated 
according to their λ-eligibility:  

, 
where t is the number of steps between the earlier use and the current update, and 
0≤λ<1 is the trace decay parameter. 

3.3   Empirical Evaluation 

We hypothesized that transferring an intent recognition model learned from the 
source task (i.e., described in Section 3.1) can significantly increase a learner’s abil-
ity in the target task. To investigate this, we applied the algorithms described in  
Section 3.2 for the transfer and non-transfer conditions. We also tested, as a baseline, 
a simple non-learning agent on the transfer task to provide additional insight on the 
difficulty of performing that task. 

The methodology we use for testing is shown in Figure 1. We have described the 
learning agents, environments, the model learned from the source task, our source-target  
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mapping, and the performance metrics. For our evaluation, we use the Lightweight Inte-
gration and Evaluation Toolkit (LIET) as the evaluator. That is, we use LIET, a variant of 
TIELT5 (Molineaux & Aha, 2005), to integrate the learning agents with RUSH, and to 
conduct the evaluation.  

For the source task, we varied the amount of training data (between 8 and 40 ex-
amples) given to the supervised learners; it wasn’t clear, a priori, how much training 
would suffice to obtain good accuracy for predicting the defensive team’s strategy. 
For the target task, we trained each condition for 100K trials. After every 250 training 
trials, the performance of the CBQL-IR agent was tested 10 times against each of the 
defensive strategies. The total reward from all 50 testing trials was averaged to obtain 
an estimate of average performance at each time step. This evaluation was conducted 
20 times to ensure repeatability and obtain statistically significant measures of overall 
transfer performance. 

We use three standard TL metrics to measure transfer performance. The first, jump 
start, measures the difference in performance between the transfer and non-transfer 
conditions before training begins on the target task. Next, asymptotic gain is the same 
measure, but applied to the end of the curves rather than the beginning. Finally, k-step 
regret measures the increase in performance over the entire learning period, defined 
as the integral difference between two learning curves, divided by the area of the 
bounding box that extends from the origin horizontally through the last trial of the 
curve (or the first trial at which they have both reached asymptotic performance) and 
vertically to the highest accuracy achieved by either averaged curve. Intuitively, this 
is a percentage of the maximum performance gain possible between an algorithm  
that always achieves worst-case performance and an algorithm that always achieves 
best-case performance. 

For the analyzer, we used USC/ISI’s implementation of randomized bootstrap 
sampling6, which bins the two sets of curves and repeatedly draws a pseudosample 
(with replacement) for both sets. Applying a TL metric to each pseudosample yields a 
distribution, which is used to assess whether the two original sets differ significantly.  

3.4   Results and Analysis 

Both supervised learners on the source task generalized well (i.e., recorded test accu-
racies above 95%) after training on only 1 example from each of the 8 defensive 
plays. Therefore, we used the trained SVM or k-nearest neighbor classifier with only 
8 training examples to provide the transferred model for the transfer condition. 

Figure 3 shows the performance on the target task, averaged over the 20 evalua-
tions, for each of three conditions: transfer using a trained support vector machine, 
transfer using a k-nearest neighbor classifier, and a non-transfer version which pre-
dicts any one of the defensive strategies used in the target task with uniform probabil-
ity. Transfer from 2 and 5 examples of each play yielded performance similar to the 
kNN and SVM curves depicted, so their performance is not shown. Also not shown is 
the average performance (over 10K trials) of the non-learning agent on the transfer 
task because its performance was so low (i.e., -61.1986). 

As expected, both transfer variants significantly outperform the non-transfer vari-
ant of the agent in terms of both asymptotic advantage and k-step regret. Thus, we 
 

                                                           
5 http://www.tielt.org/ 
6 http://eksl.isi.edu/cgi-bin/page.cgi?page=project-tl-evaluation.html 
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Fig. 3. Target task performance on the Quarterback control task for the transfer condition (us-
ing either SVM or kNN to learn from the source task), and non-transfer condition’s (Random’s) 
play predictions 

accept our hypothesis as stated in Section 3.3. The regret of the kNN variant over the 
non-transfer agent is 78.57 (measured over the first 50,000 trials), while the regret of 
the SVM variant over the non-transfer agent is 78.87 (measured over the first 70,000 
trials). The asymptotic advantage of kNN over the non-transfer agent is 59.5; for 
SVM, it’s 66.66. All of these measures are highly statistically significant with 
p<0.0001. For jump start, there is no statistical advantage between the three curves. 
This is because CBQL-IR acts randomly when there are no stored cases, as is true 
before any training occurs; so all three pursue the same policy before training. The 
differences between SVM and kNN are not statistically significant using either the  
k-step-regret or asymptotic advantage measures. 

4   A Concurrent Learning Alternative 

Transfer learning is intuitively appealing, cognitively inspired, and has led to a burst 
of research activity, much of which concerns new techniques involving hierarchical 
RL. However, transfer is not always cost-effective, and can sometimes result in de-
creased performance (i.e., negative transfer). Also, determining what to transfer is a 
research question itself (e.g., Rosenstein et al., 2005; Stracuzzi, 2006). Yet seemingly 
overlooked in the literature is a more fundamental question: Should learning be per-
formed separately on the source and target tasks, or can the knowledge learned on the 
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Fig. 4. Target task performance for the SVM and kNN transfer conditions and the concurrent 
learning (clustering) algorithm (for 10K (top) and 100K (bottom) trials) 

source task be instead learned during the target task? What are the tradeoffs of doing 
this versus transfer learning? We found no investigations on this issue. 

We briefly address this here, referring to the alternative as concurrent learning. In 
this approach, intent recognition takes place during (rather than prior to) learning to 
control the QB. As usual during the target task, the label of the defensive play is not 
given, and must be inferred. We model this as an online unsupervised learning task 
that clusters the observable movements of the defensive players into groups. The  
perceived movement m∈M for each defensive player is the direction that player is 
moving during a time step, which has nine possible values: 

M = {None, Forward, Left, Right, Back, Forward-Right, Forward-Left, Back-Right, 
Back-Left} 

These directions are geocentric; Forward is always in the direction of play (down-
field), and all other directions are equally spaced at 45° angles. Clustering is per-
formed after the third time step of each play, at which time we observe the offsets of 
the players from their starting formation positions. Thus, 16 features are used to rep-
resent defensive plays (i.e., the two-dimensional offsets of each of 8 defensive play-
ers). For the first 1000 trials, examples were added to the batch to be clustered, but the 
predicted cluster (i.e., the recognized plan) was not used in action selection. 
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We used the Expectation-Maximization (EM) algorithm from the Weka7 suite of 
machine learning software for clustering. EM iteratively chooses cluster centers and 
builds new clusters until the centers move only marginally between iterations. Also, it 
increases the number of clusters to discover until successive steps decrease the aver-
age log-likelihood of the correct clustering of all points. We selected EM after re-
viewing several other algorithms; the clusters it found correctly disambiguated the 
defensive plays over 99% of the time with less than 1000 examples. 

Figure 4 compares the performance of the online clustering agent, which learns 
two tasks concurrently, with the SVM and kNN transfer agents introduced in  
Section 3. Performance differences are not statistically significant using any of our 
metrics over the full training period (100,000 trials). However, there is a significant 
benefit to performing transfer during early learning; transfer achieves good perform-
ance far more quickly. As shown, both TL algorithms learn quickly during the first 
500 trials, reaching a total reward greater than 60 on average. The concurrent learning 
algorithm instead takes 2,000 trials to reach the same performance level.  

Regret for the kNN TL agent versus the concurrent learning agent for the first 
2,000 trials is 29.4, and for the SVM agent is 29.3. Both TL agents statistically  
outperform the online agent with p<0.0001 during this early stage of learning.  

The concurrent learner’s initial learning rate is low due to the time it must spend 
learning to recognize opponent behaviors, which the TL algorithms learned from the 
source task. Also, it discovered more clusters than the actual number of defensive 
plays used. Finally, early examples provided by the CBR/RL agent aren’t helpful; 
they are either too short, or atypical, because that agent does not yet have a successful 
policy for controlling the QB, whose actions affect the play outcome and the actions 
of the defensive team. The benefit of TL is that the QB used in the target task is  
already an expert at “reading” the defense, and so good examples can be obtained 
starting with the first trial on the target task. 

The benefits of TL versus concurrent learning should increase with task complex-
ity because more complex tasks typically require more knowledge to learn, which is 
often easier to obtain via transfer from simpler tasks. However, there is a cost to TL, 
both in terms of engineering (in some cases, the source task may be in an entirely  
different domain) and in higher overall computational complexity. Practitioners  
interested in multi-task learning may benefit by instead using concurrent learning.   

5   Discussion: Intent Recognition, TL, CBR, and Future Work 

In his seminal work on plan recognition, Kautz (1987) described his event hierarchy 
circumscription framework as a process for determining “which conclusions are abso-
lutely justified on the basis of the observations, the recognizer's knowledge, and a 
number of explicit closed-world assumptions.”  In general, this union of observations, 
prior knowledge, and closed-world assumptions characterizes research efforts on plan 
recognition. Typically this prior knowledge is encapsulated into a plan library of gen-
erative models (either logical (Kautz, 1987) or probabilistic (Bui, 2002)) that the  
recognizer matches against streams of observations. 

                                                           
7 http://www.cs.waikato.ac.nz/ml/weka/ 
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In intent recognition, the recognizer attempts to identify useful features relating to 
an actor's future actions (e.g., the next action to be performed) without an explicit 
representation of the plan generation model. Even without knowledge of the underly-
ing generative model, being able to discriminate between different types of plans or 
actions sufficiently in advance can be extremely valuable (e.g., as shown in our 
study).  For instance, in applications involving opponent or user modeling, having 
limited knowledge of the actor's intentions at an early stage can be more useful than 
having complete information about the entire plan later in the execution process. 

Prior work on TL and plan recognition has focused on the problem of transferring 
recognition models between different actors. Liao et al. (2005) demonstrated a method 
for using data from other users to learn priors for a discriminative location-based activ-
ity recognition model; an alternate approach is to use prior knowledge to dictate the 
structure of the model rather than the parameters (Natarajan et al. 2007).  A general 
issue is that plan generation models based on propositional representations (e.g., the 
basic HMM) do not generalize well across different users, so there has been work on 
inference methods for more expressive relational and hierarchical HMM variants that 
have superior generalization properties (Natarajan et al. 2008; Blaylock & Allen, 
2006). In our work, the source task (learning a discriminative model of the opponent's 
play) is quite dissimilar from the target task (learning an optimal single-agent play  
policy) and we do not address the problem of generalizing across actors. 

While several researchers have addressed the topic of CBR and intent or plan rec-
ognition, none have proposed its use to facilitate transfer learning. For example, Fa-
gan and Cunningham (2003) analyze a method for predicting a player’s actions in a 
computer game, where the task was supervised learning rather than transfer learning. 
Kerkez and Cox (2003) represent plans as state-action sequences, index them using an 
abstract representation (i.e., the number of generalized predicates instantiated in a 
state), and analyze a case-based algorithm for action prediction for multiple domains. 
However, no transfer was performed. 

Case-based methods that leverage knowledge of intentions and/or plans have sig-
nificant potential for TL. We demonstrated a simple approach of this type where the 
beneficiary was a case-based reinforcement learner. Our future work includes investi-
gating our techniques on more comprehensive tasks (e.g., learning to control all  
offensive players to win an entire football game), including those requiring transfer 
between different problem domains. More generally, CBR can also be used to map 
the learned knowledge, and in other roles. An excellent line of future research con-
cerns the study of how case-based algorithms can support continuous learning and 
planning processes in environments with intentional agents where performance de-
pends on the ability to master multiple tasks, and where reuse can significantly reduce 
the time required before competent performance emerges.  

6   Summary  

We introduced and evaluated a transfer learning strategy that uses intent recognition 
to assist a case-based reinforcement learner. It significantly improved task perform-
ance for an application involving the control of an agent in a multi-agent team sports 
environment. Our work is novel in its use of intent recognition for this purpose.  
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We also briefly examined the typically ignored issue of whether concurrent learn-
ing strategies should be considered as an alternative to transfer learning. We discussed 
some of their tradeoffs, but leave their formal analysis for future research. 

Case-based reasoning can play significant roles in transfer learning, yet it has re-
ceived only a limited amount of attention (e.g., Klenk & Forbus, 2007). This is sur-
prising, given its potential as a focal process for mapping learned knowledge, and 
reducing overall learning time. In our future work, we will examine how case-based 
approaches can support lifelong learning in multi-task, multi-agent environments in 
which knowledge of intentions and (e.g., adversarial) plans (e.g., Sukthankar et al., 
2008) can be leveraged to improve performance for decision support applications.  
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